Звёздчатые фигуры это многоугольник, у которого все стороны и углы равны, а вершины совпадают с вершинами правильного многоугольника. Стороны звёздчатого многоугольника могут пересекаться между собой. Существует множество звёздчатых фигур многоугольников или звёзд.

Среди них пентаграмма, гексаграмма, две гептаграммы, октограмма, декаграмма, додекаграмма.

Звёздчатые многоугольники можно получить, продолжая одновременно все стороны правильного многоугольника после их пересечения в его вершинах до их следующего пересечения в точках, которые и являются вершинами звёздчатого многоугольника.

Полученый звёздчатый многоугольник будет звёздчатой формой правильного многоугольника, из которого он получен. Вершинами звёздчатого многоугольника будут считаться только точки, в которых сходятся стороны этого многоугольника, но не точки пересечения этих сторон; звёздчатая форма данного многоугольника имеет столько же вершин, сколько он сам.

Смотреть встроенную онлайн галерею в:
https://alekseevaee.ru/matematicheskij-mir/galereya-kartin/zvezdchatye-figury#sigProId318d2f9178

Указанную операцию невозможно проделать с правильным треугольником и квадратом, так как после продления их стороны более не пересекаются; среди правильных многоугольников звёздчатые формы имеют только многоугольники с числом сторон более четырёх. Звёздчатой формой правильного пятиугольника (пентагона) является пентаграмма.

Звёзды могут быть не распадающимися едиными многоугольниками, не являясь соединениями других правильных или звёздчатых многоугольников (как в случае с пентаграммой), а могут являться таковыми соединениями, примером чему служит звёздчатая форма шестиугольника — гексаграмма (или Звезда Давида), являющаяся соединением двух треугольников.

zvezdchatye 01

У правильного многоугольника может быть несколько звёздчатых форм, количество которых зависит от того, сколько раз его стороны пересекаются между собой после их продления, примером чего является семиугольник, имеющий 2 звёзчатые формы (два вида семиконечной звезды).

АНОНС

05.2020 г. Состоится в сероссийский вебинар из модуля геометрии на тему «Формирование исследовательских умений при решении сложных геометрических задач.

Подробнее...

04.2020 г. Состоится всероссийский вебинар из модуля геометрии на тему «Методические особенности обучения решению геометрических задач повышенного уровня сложности.

Подробнее...

24.03.2020 г. Состоится всероссийский вебинар из модуля геометрии на тему «Методика обучения решению задач повышенного уровня сложности на уроках геометрии в основной школе.

Подробнее...

ПОИСК