Звёздчатый многогранник или звёздчатое тело это не выпуклый многогранник, грани которого пересекаются между собой. Звёздчатой формой многогранника называется многогранник, полученный путём продления граней данного многогранника через рёбра до их следующего пересечения с другими гранями по новым рёбрам.

Правильные звёздчатые многогранники — это звёздчатые многогранники, гранями которых являются одинаковые (конгруэнтные) правильные или звёздчатые многоугольники. В отличие от пяти классических правильных многогранников (платоновых тел), данные многогранники не являются выпуклыми телами.

В 1811 году Огюстен Лу Коши установил, что существуют всего 4 правильных звёздчатых тела (они называются телами Кеплера — Пуансо), которые не являются соединениями платоновых и звёздчатых тел. К ним относятся открытые в 1619 году Иоганном Кеплером малый звёздчатый додекаэдр и большой звёздчатый додекаэдр, а также большой додекаэдр и большой икосаэдр, открытые в 1809 году Луи Пуансо. Остальные правильные звёздчатые многогранники являются или соединениями платоновых тел, или соединениями тел Кеплера — Пуансо.

Полуправильные звёздчатые многогранники — это звёздчатые многогранники, гранями которых являются правильные или звёздчатые многоугольники, но не обязательно одинаковые. При этом строение всех вершин должно быть одинаковым (условие однородности). Г. Коксетер, М. Лонге-Хиггинс и Дж. Миллер в 1954 году перечислили 53 таких тела и выдвинули гипотезу о полноте своего списка. Только значительно позже в 1969 году Сопову С. П. удалось доказать, что представленный ими список многогранников действительно полон.

Многие формы звёздчатых многогранников подсказывает сама природа. Например, снежинки — это плоские проекции звёздчатых многогранников. Некоторые молекулы имеют правильные структуры объёмных фигур.

На данных рисунках каждая грань для красоты и наглядности окрашена собственным цветом.

Смотреть встроенную онлайн галерею в:
https://alekseevaee.ru/matematicheskij-mir/galereya-kartin/zvezdchatye-tela#sigProId543b4e78c8

АНОНС

05.2020 г. Состоится в сероссийский вебинар из модуля геометрии на тему «Формирование исследовательских умений при решении сложных геометрических задач.

Подробнее...

04.2020 г. Состоится всероссийский вебинар из модуля геометрии на тему «Методические особенности обучения решению геометрических задач повышенного уровня сложности.

Подробнее...

24.03.2020 г. Состоится всероссийский вебинар из модуля геометрии на тему «Методика обучения решению задач повышенного уровня сложности на уроках геометрии в основной школе.

Подробнее...

ПОИСК