Биография. Леонард Эйлер немецкий и русский математик, механик и физик. Родился 15 апреля 1707 г. в Базеле. Учился в Базельском университете (в 1720–1724 гг.), где его учителем был Иоганн Бернулли. В 1722 г. получил степень магистра искусств. В 1727 г. переехал в Санкт-Петербург, получив место адъюнкт-профессора в недавно основанной Академии наук и художеств.

В 1730 г. стал профессором физики, в 1733 г. – профессором математики. За 14 лет своего первого пребывания в Петербурге Эйлер опубликовал более 50 работ. В 1741–1766 гг. работал в Берлинской академии наук под особым покровительством Фридриха II и написал множество сочинений, охватывающих по существу все разделы чистой и прикладной математики. В 1766 г. по приглашению Екатерины II Эйлер возвратился в Россию. Вскоре после прибытия в Санкт-Петербург полностью потерял зрение из-за катаракты, но благодаря великолепной памяти и способностям проводить вычисления в уме до конца жизни занимался научными исследованиями: за это время им было опубликовано около 400 работ, общее же их число превышает 850. Умер Эйлер в Санкт-Петербурге 18 сентября 1783 г.

Труды Эйлера свидетельствуют о необычайной разносторонности автора. Широко известен его трактат по небесной механике Теория движения планет и комет (Theoria motus planetarum et cometarum, 1774), в котором особое внимание уделено теории движения Луны. Автор книг по гидравлике, кораблестроению, артиллерии. В 1739 г. Эйлер создает новую теорию музыки. Образцом популяризации науки является изложение Эйлером наиболее важных проблем естествознания в его Письмах к одной немецкой принцессе о разных метафизических материях (Lettres a une Princesse d'Allemagne, 1768–1772). Работа ученого Об усовершенствовании стеклянных очковых линз (Sur la Perfection des Verres Object des Lunettes, 1747) способствовала созданию ахроматических телескопов.

Наибольшую известность принесли Эйлеру исследования в области чистой математики. Современная тригонометрия с определением тригонометрических функций как отношений и с принятыми в ней обозначениями берет начало с эйлеровского Введения в анализ бесконечных (Introductio in analysin infinitorum, 1748). В этом трактате дается разложение в бесконечные ряды многих элементарных функций, в том числе ex, sin x, cos x, и выводится известная формула (формула Эйлера). При x = p она дает выражение , символизирующее единение арифметики (которая представлена числами 0 и 1), алгебры (мнимое число, обозначаемое символом i), геометрии (число p) и анализа (e). Предпринятый в этой работе анализ кривых и поверхностей с использованием их уравнений позволяет рассматривать ее как первый учебник аналитической геометрии.

Следующее значительное сочинение Эйлера – Дифференциальное исчисление (Institutiones calculi differentialis, 1755), а затем трехтомное Интегральное исчисление (Institutiones calculi integralis, 1768–1774). Здесь не только рассматриваются разделы математики, вынесенные в названия книг, но и развивается теория обыкновенных дифференциальных уравнений, уравнений в частных производных. Эйлеру принадлежит первое изложение вариационного исчисления, он является создателем теории специальных функций, известны его работы по теории чисел. Эйлер установил некоторые свойства аналитических функций, применил мнимые величины к вычислению интегралов, тем самым положив начало теории функций комплексного переменного.

АНОНС

05.2020 г. Состоится в сероссийский вебинар из модуля геометрии на тему «Формирование исследовательских умений при решении сложных геометрических задач.

Подробнее...

04.2020 г. Состоится всероссийский вебинар из модуля геометрии на тему «Методические особенности обучения решению геометрических задач повышенного уровня сложности.

Подробнее...

24.03.2020 г. Состоится всероссийский вебинар из модуля геометрии на тему «Методика обучения решению задач повышенного уровня сложности на уроках геометрии в основной школе.

Подробнее...

ПОИСК